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Stochastic dynamics of the diffusive Haken model with subthreshold periodic forcing

Paul C. Bressloff and Peter Roper
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Loughboroug

Leicestershire LE11 3TU, United Kingdom
~Received 12 December 1997!

We demonstrate a noisy resonance phenomenon in a winner-takes-all neural network. We derive an expres-
sion for the theoretical transition rate between states and show that this rate matches the driving frequency. We
further show that this effect persists when a diffusive coupling is introduced into the network leading to a more
robust system.@S1063-651X~98!00308-0#

PACS number~s!: 87.10.1e, 05.40.1j
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I. INTRODUCTION

Neurobiologists have noted that in many regions of
cortex, groups of adjacent neurons appear to form hig
functional units that serve to analyze some particular stim
lus feature such as the orientation of an edge of an image@1#,
or the position of a sensory stimulus on the skin@2#. Neural
network models of the formation and behavior of these
herent structures in brain activity generally involve two a
pects:~i! a selection mechanism that determines the cente
a localized excitation in response to an input, and~ii ! an
interaction mechanism that serves to spread the resp
over a neighboring region of the network, leading to a d
tributed response. Haken@3# has constructed a simple neur
network model to dynamically implement the selecti
mechanism. The network obeys a competitive gradient
namics and has ground states that are strictly localized st
a single neuron is active and all others quiescent. Re
work @4–6# has extended this model to take into accoun
simple interaction mechanism, leading to a distributed rep
sentation.

Another important subject currently the focus of mu
attention is that of noise induced phenomena in biolog
systems. There is growing evidence that the phenomeno
‘‘stochastic resonance’’~SR! @7# may play a role in the ex-
treme sensitivity exhibited by various sensory neurons:
cricket cercal system@8#, human tactile sensation@9#, and
hair mechanoreceptors in the tail fan of the crayfish@10#.
However, these processes all occur at the periphery of
nervous system, and it is interesting to consider whet
similar phenomena may occur within the brain. In fact, S
has been shown to occur in a hippocampal slicein vitro @11#
but it is not clear whether this effect serves any purpose o
merely an artifact.

In this paper we examine and analyze the dynamics of
periodically driven noisy Haken model. We show that it u
dergoes a resonant type behavior which is reminiscen
stochastic resonance, and suggest a biological interpreta
of our results.

II. HAKEN’S COMPETITIVE NETWORK

Consider a single-layer network ofN neurons and denot
the state of thenth neuron byqnPR with n51, . . . ,N. In
PRE 581063-651X/98/58~2!/2282~6!/$15.00
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Haken’s original model the network evolves according to
gradient dynamics@3#

q̇n52
]V~q!

]qn

5@122D~q!1qn
2#qn , ~1!

with

V~q!52
1

2
D~q!1

1

2
D~q!22

1

4(n
qn

4 ~2!

and

D~q!5(
n

qn
2 ~3!

represents a form of global coupling. Note that the lack
local interactions implies that there is no natural netwo
topology. Figure 1 shows a plot of the potentialV(q) for a
network of two neurons,q1 andq2.

Equation ~1! is invariant under the transformationq→
2q. Moreover,qn(t)>0 for all t.0 andn if qn(0)>0 for
all n. For suppose thatqn(t)50 and qm(t)>0 for all m
Þn. Settingqn50 on the right-hand side of Eq.~1! shows
that q̇n(t)>0. That is,qn cannot cross over to the negativ
real axis. The network converges to one of the station
states of the potentialV, that is,

FIG. 1. Plot of the potential for the two neuron nondiffusiv
network. Minima are shown at~1,0!, ~0,1!, ~21,0!, ~0,21! and a
maximum at~0,0!. All quantities are in dimensionless units.
2282 © 1998 The American Physical Society
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2
]V

]qn

5qn
31~122D!qn50 ~4!

for all n. Thus the equilibria of Eq.~1!, which we denote by
q̄, satisfy q̄n50 or q̄n5A2D21 with D determined self-
consistently. Hence the set of stationary states can be div
into N11 classes, each of which is determined by the nu
ber p of excited sites. For a givenp, D5p/(2p21) and the
corresponding potential at a stationary state is

V~p!52
p

~8p24!
. ~5!

Linear stability analysis@3,6# establishes that only the sta
tionary statesp51 are stable, whereas all other stationa
states are either unstable (p50) or saddle points (p.1).
For each state in the classp51, there exists a single excite
site, n0 say, such thatq̄n5dn0 ,n . MoreoverD51 andV(1)

521/4. These are theN strictly localized ground states o
the network. There are two homogeneous stationary st
given by thevacuumstatep50 and thedissipativestatep
5N. The former satisfiesqn50 for all n and V(0)50 and
the latter has

q̄n5
1

A2N21
;n ~6!

and

V~N!52
N

~8N24!
. ~7!

In the largeN limit the dissipative state becomes pointwi
identical to the vacuum state but has lower energy,V(`)5
21/8. Also note that for an infinite lattice the dissipativ
state is marginally stable.

We conclude that the ground states of the system con
of strictly localized states in which only one site is excit
and the remainder quiescent; the particular ground state
lected depends on the initial data and/or additional app
inputs. If there are no external inputs, then the excited n
ron is the one with the highest initial activity. In other word
the network dynamically realizes awinner-takes-allstrategy.
Such networks are typically termedcompetitivenetworks.
Competitive networks signify their outputs by the firing of
single neuron, or a small proximal group of neurons. Th
thus classify data by the firing of the same neuron~s! for all
inputs that belong to a single category. Electrophysiolog
recordings from single cortical cells indicate that in the br
the representation of sensory information is not encoded
the global activity of the entire cortex, but rather by the firi
patterns of small groups of neurons~see Ref.@12#, and ref-
erences therein!. Competitive networks therefore provide ru
dimentary models of how perception and categorization
cur in real brains@13#. It can also be shown that suc
networks are equivalent to associative memories@14#, and
Haken has demonstrated that this particular network can
form associative recall of digitized photographs@3#.

One obvious drawback to this model is its inability
learn. Output states are ‘‘hard wired’’ into the dynamics, a
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all have the same size basins of attraction. For a truly b
logical system one would want the facility to learn new c
egories, and also to emphasize or deemphasize other
fact, Haken’s original formulation includes variable synap
strengths but for our purposes we set them all to be equa
unity and thus neglect their effect.

III. THE DIFFUSIVE HAKEN MODEL

It is clear that competitive networks with single outp
neurons are not robust to degradation: if a single neuro
destroyed then the entire corresponding category is lost.
cently, one of us@5# has shown that the inclusion of a diffu
sive term in the potential of the original Haken model c
delocalize the ground states. For certain values of the c
pling strength there can exist a balance between the effec
the diffusion and of the localizing potential, which yield
new states that are localized excitations~or bubbles! distrib-
uted over many neurons. These ‘‘bubbles’’ represent a v
robust coding of information since neighboring cells aid t
reconstruction of lost information following the ‘‘death’’ o
a single cell. Furthermore, Kohonen@15# has shown that
such ‘‘bubbles’’ enable the construction oftopographic
maps.

We now impose ad-dimensional square lattice topolog
on the network; the diffusive Haken model has a potentia

U~q!5
a

2 (
^m,n&

~qm2qn!21V~q!, ~8!

where^m,n& denotes summation over nearest neighbor pa
The first term on the right-hand side of Eq.~8! represents a
diffusive interaction with coupling strengtha. Using the idea
of an anticontinuum limit@16# a uniform continuation from
the zero diffusive coupling (a50) case can be performed
We denote the state of the network byQ(a,D). Stationary
states satisfy

~122D!qn1qn
31a (

^m,n&
~qm2qn![G~Q,a,D!50. ~9!

For a givenD[D0, D0.1/2, anda50 the equilibria of Eq.
~9! satisfy q̄n50 or q̄n56A2D021 ~if negative solutions
are included!. Denote the Jacobian]G/]Q by dG. Since

@dG(Q̄,0,D0)#nm5dn,mln with ln52(2D021) if q̄n50
andln52(2D021) if q̄nÞ0, dG is invertible at the station-
ary point (Q̄,0,D). Hence one can use the implicit functio
theorem to show that for sufficiently small couplinga there
exist local continuations of eachQ̄ for sufficiently smalla
@5#. Furthermore one can show that to a first approximat
each state has a potential

Umin~a!'Vmin1da. ~10!

In fact, such states persist for all values ofa in one dimen-
sion, whereas ford.1 there exists a critical couplingac(d)
beyond which localized ground states cease to exist and
effects of diffusion dominate. The critical coupling can al
be computed@5# and is found to be
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ac~d!5
1

10d
. ~11!

The analysis of Ref.@5# holds for more general coupling
than just a diffusive one, the only criteria being that t
coupling strength decays exponentially with distance.

IV. STOCHASTIC DYNAMICS OF THE NONDIFFUSIVE
MODEL

We select two neuronsn51,2, say, and drive the networ
with the weak periodic bias

I n~ t !5«@dn,1cos2~Vt !1dn,2sin2~Vt !#. ~12!

We further impose« small, so that the bias itself is unable
cause transitions between states, i.e., we have a subthre
forcing. We also introduce a local additive Gaussian no
for each neuron. This corresponds to an internal noise
say, thermal origin. Equation~1! then becomes

q̇n~ t !52
]V~q!

]qn

1sjn~ t !1I n~ t !, ~13!

where jn(t) is a zero-mean Gaussian white noise proc
with ^jn(t)&50 and ^jm(t1)jn(t2)&5dm,nd(t12t2). Thus
the noise is uncorrelated between neurons, and has vari
D5s2.

Numerical simulations show that at low noise levels t
network tends to remain in one of two possible output sta
and that switching events between these two states o
exceedingly rarely. In the limit of zero noise these sta
correspond toqn5dn,1 and qn5dn,2 , and the occupied one
depends on initial conditions. As the noise is gradually
creased the network begins to jump between output st
with a transition rate that is partly entrained with the drivi
force. For high noise levels the network randomly flips b
tween output states and there is no synchrony with the d
ing signal. Simulations also show that in the entrained
gime there is a clear separation of time scales for the sys
the two scales are the time to relax to an output statet relax
and the mean residence time of an output state,t res, with
t res@t relax. We therefore make the adiabatic assumption a
neglect the relaxation time.

To quantify the behavior of the network we tabulate a
histogram the residence times of an output state~which is
equivalent to the transition time out of the state!. Depending
on the level of noise, the resulting distribution typically di
plays peaks centered at

Tp5S p2
1

2DT0 , pPZ ~14!

whereT05p/V is the driving period. These peaks are s
perimposed on an exponentially decaying background~see
inset to Fig. 2!. We denote the height of thekth peak byhk .
Each hk passes through a maximum as a function of b
noise strength and the forcing period@17#. In Ref.@17# it was
suggested that for a particular driving frequencyn5T0

21,
stochastic resonance is attained at the particular n
strengths for which the height of the first harmonic,h1, is
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maximized. However, the connection between Gammait
et al.’s definition and a maximum in the power spectral de
sity of the system, which is the signature of stochastic re
nance, has yet to be established. In fact this loose en
presently the subject of some controversy, and for this rea
we hesitate to describe this effect as stochastic resonance
instead name it a ‘‘resonance in the sense of Gammai
et al.’’ With this caveat, Fig. 2 shows howh1 for the Haken
network varies with noise strengths. Several values of the
driving frequency are shown. It is seen that the maxim
value of h1 occurs at a nonzero value ofn, and that asn
increases, this maximum is shifted to higher noise lev
Noise assisted synchronization and a dependence of the
timal noise strength on the driving frequency are featu
shared with systems displaying stochastic resonance.

It is not a priori obvious that we can reduce the effectiv
dimensionality of our system. However, for low noise leve
qn(t)'0;nÞ1,2, and thus to a good approximation Eq.~13!
reduces to a two-dimensional system (n51,2) with V given
by Eq. ~1! for N52. In the positive quadrant the potenti
V(q1 ,q2) has two minimaqa at (1,0) and (0,1), and a
saddle atqs5(1/A3 , 1/A3) with V(qs)521/6, see Fig. 1.
Since the periodic forcing is chosen to be positive valued
system is retained in the positive quadrant and thus one
neglect the effects of the minima at (21,0) and (0,21).
Recall that the system remains in the positive quadrant in
absence of any noise or external forcing. We may theref
reduceV to a two-dimensional bistable potential, provide
that e is not too small and the noise is not too large.

To qualify as a resonance phenomenon, some internal
quency of the system must match the driving frequency
Ref. @17# it was proposed that resonance takes place w
the driving frequencyn matches, orresonateswith the mean
transition rate due to noise of the unforced system. It w
further suggested that this occurs whenh1 is maximal. In
fact, whenh1 is maximal very few transitions occur at othe
harmonics, and thus the first harmonic dominates the hi
gram. Under these conditions, the mean first passage t
which is equal to the first moment of the histogram, is clo
to the driving period. Thus we justify naming this effect
resonance.

FIG. 2. Variation ofh1 with noise strengths for the nondiffu-
sive network. Three different values of the driving frequencyn are
shown, and asn increasessopt increases. The inset shows a typic
exponentially decreasing histogram of residence times: time i
multiples ofT0 ~see text!.
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We assume that all transition events occur at the sa
point, reasoning that transitions at all other points are ex
nentially less likely. It can therefore be shown that the me
escape rate from a given minimum in an unperturbed mu
dimensional multistable potential is given by the Krame
rate formula@18#

r ~s!5
l

2p
A detH~qa!

udetH~qs!u
expS 22dV

s2 D . ~15!

The HessianH of the potential has components

Hmn5
]V2

]qm]qn

~16!

and is evaluated at the minima,qa , and the saddle,qs . l is
the positive eigenvalue of the Hessian of the potential at
saddle, anddV5Vs2Va51/12 is the height of the potentia
barrier at the saddle. For our system the prefactor in Eq.~15!
has the value 0.39.

Resonance occurs when the time for the system’s m
residence in one minimum is close to half the driving per
@17#. This is equivalent to the conditionr 52n. Therefore,
given a driving frequencyn we may experimentally ascertai
sopt, the optimal noise level for resonance in the syste
Using Eq.~15!, sopt determinesr opt, the corresponding the
oretical escape rate. Thus we may comparer opt with the
original driving frequencyn. Figure 3 shows plots ofr (s)
versus noise strengths, and 2n versus optimal noise
strengthsopt. It is seen that the optimal noise level match
well that predicted by the theory.

Note that in the absence of any periodic forcing the h
togram of residence times is essentially a decaying expo
tial as predicted from Kramers’ theory, which is in contra
to the multimodal structure shown in Fig. 2. If one dete
mines the variation in the height of the histogram at a re
dence time equal to one of the periods of the forced case,
also sees the histogram height pass through a maxim
However, this occurs at much lower noise levels~i.e., there is
no matching of time scales! and is simply an artifact of the
sampling.

FIG. 3. The matching of the theoretical escape rater with twice
the driving frequencyn.
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V. STOCHASTIC DYNAMICS OF THE DIFFUSIVE MODEL

For concreteness, consider a one-dimensional lattice
select two neurons separated byr lattice sites withr suffi-
ciently large such that the ground states centered at the
sites have very little overlap. As in the nondiffusive case
introduce local additive noise together with a periodic stim
lation of the two selected neurons given by«cos2(Vt) and
«sin2(Vt), respectively. The equations of motion are thus
the form

q̇n~ t !52
]U~q!

]qn

1sjn~ t !1I n~ t !, ~17!

with U(q) given by Eq.~8!. A resonant effect is again ob
served with the system switching between the states lo
ized about the two centers~see Fig. 4!.

Plots ofh1 versuss are shown in Fig. 5 for various cou
pling strengths. We observe that asa is increased, the maxi
mum of h1, corresponding to resonance, is shifted to low
noise levels. This may be explained by noting that increas
a causes a decrease in the barrier heightdU(a) and thus an
increase in the unperturbed transition rate~15!. We indicate
below a method for calculatingdU(a).

Whena is sufficiently large, the localized solutions of th
one-dimensional diffusive Haken model~in the absence of
noise and external forcing! are distributed over many lattic

FIG. 4. Two snapshots of the evolution of the network w
diffusive couplinga50.5: before and after the network has flippe
between states. For clarity the low noise case is shown.
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sites suggesting that they can be approximated by a
tinuum version of the model. The potential governing t
gradient dynamics of the continuum model takes the form

U@q,a#5E
2`

`

dxFa

2 S ]q~x!

]x D 2

2
q~x!4

4
G2

D

2
1

1

2
D2,

~18!

with

D@q#5E
R
dx q~x!2 ~19!

and a a renormalized diffusion constant. By means of t
Euler-Lagrange equation, stationary solutions of the dyna
ics satisfy

a
d2q

dx2
5~2D@q#21!q~x!2q~x!3. ~20!

Localized states can now be interpreted as finite energy
figurations or instantons of the continuum model. Usi
phase-plane analysis it can be shown that for fixedD one has
the following analytical expression for an instanton~centered
at x50) @4,6#:

q~x!5q0FcoshS q0x

A2a
D G21

. ~21!

The amplitude of the instanton is

q05A~2D21!2. ~22!

This leads to a self-consistency condition forD of the form

D54Aa~2D21!, ~23!

which has real solutions provided that

a>ā51/16. ~24!

FIG. 5. Variation ofh1 with noise strengths for the diffusive
network. Three different values of the coupling strengtha are
shown, and asa increasessopt decreases. The driving frequencyn
is held constant.
n-

-

n-

Keeping only the lower energy solution, the amplitude
the instanton as a function of the couplinga is

q0~a!5A2
a

ā
S 12A12

ā

a
D . ~25!

It follows that the energy of the instanton is@note that Eq.
~10! is only valid in the limita→0]

Umin~a!5F„q0~a!,a…, ~26!

where

F~q0 ,a!52A2aq014aq0
22A2a

q0
3

6
. ~27!

We can now determine the barrier height for transitions
tween two single-instanton states centered at different s
x1 and x2 ~cf. Fig. 4! under the assumptions thatx1 ,x2 are
well separated on the lattice and that the most probable
of escape is via a saddle consisting of an instanton dou
centered about the two selected sites. Solving the s
consistency condition forD we find that the height of each
instanton in the doublet is

q08~a!5A2
a

ā
S 22A42

ā

a
D , with q08,q0 . ~28!

Figure 6 shows how the amplitudes of the single instant
and a member of the doublet, vary with the coupling stren
a; as expected, the continuum limit becomes invalid
small a.

The energy of the doublet~assuming that the local inter
action energy of the two instantons can be neglected! is

Ud~a!52F„q08~a!,a…18aq08~a!2 ~29!

and the required barrier height is

FIG. 6. The variation of the instanton amplitudes,qo and q08 ,
with coupling strengtha. The dashed curve shows the singlet a
plitude @Eq. ~25!#, the bold one shows the doublet amplitude@Eq.
~28!#. Simulation results are also shown: results for the singlet s
are represented by a plus sign, and for the doublet state by a c
Inset: The variation of the barrier height with coupling strengtha is
shown both analytically~solid line! and numerically~circles!.
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dU~a!5Ud~a!2Umin~a!. ~30!

The inset to Fig. 6 demonstrates that the barrier height
idly decreases with increasing coupling strength, as we
pect. One consequence of this is that there appears to
tradeoff between the strength of the local coupling,a, and
hence the system’s ability to withstand damage, and the
bustness of the system to noise. Strong coupling (a.0.2)
means that information about an output state is dispe
over many neurons, making a resilient system. However,
also means that the barrier height between output states
comes so small that noise induced transitions become im
tant, even for low noise levels. Thus the network is unable
function as a classifier.

VI. CONCLUSION

We have shown that a competitive neural network mo
with weak noise and a subthreshold driving signal can
hibit a resonant behavior that is akin to stochastic resona
Stochastic resonance is a phenomenon whereby random
tuations and noise can enhance the detectability and/or
coherence of a weak signal in certain nonlinear dynam
systems~see, e.g., Ref.@7#, and references therein!. We have
also seen that this resonance persists when diffusive coup
is introduced into the model: a feature which induces sta
ity and robustness into the network. We believe that Hake
model provides a useful model for classification tasks in
same way that the Hopfield model, though biologically im
plausible, is a viable metaphor for associative memory.

Recalling that a main impetus for investigating compe
tive networks is to model mental categorization tasks,
look for commensurate resonant behavior in biological s
tems. Recent psychophysical evidence suggests that sto
tic resonance may feature in high level brain function: Sim
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nottoet al. @19# have shown that SR may be exploited duri
the recognition of static visual images that have been
torted by time varying noise. Chialvo and Apkarian@20# and
Riani and Simonotto@21# report on psychophysical exper
ments where SR is observed in the perceptual transit
between either facet of an ambiguous figure, such as
Necker cube. In both Ref.@20# and Ref.@21# the image, or
ambiguous figure, is given a weak periodic transformat
corresponding to a weak signal but the noise has differ
origins. If we ascribe a ground state of Haken’s model
each possible interpretation of the ambiguous figure, then
treatment is suggestive of these results. Riani and Simon
@22# use the alternative formulation of a constraint satisf
tion network, which is equivalent to a suitably configure
Hopfield network, to model their experimental results. Su
a formulation was first introduced by Rumelhartet al.within
the context ofconnectionist models@23#, but was then ex-
tended by Riani and Simonotto to demonstrate stocha
resonance. Connectionist models describe psycholog
phenomena in terms of such mental processes as ideas
schemata, and are thushigh levelexplanations: in the mode
of Rumelhartet al. each node of the network corresponds
a possible hypothesis about the network’s input, rather t
an individual neuron. In contrast, competitive networks
tempt to provide a low level description of neural activit
and therefore such models may help to explain how a ne
architecture can subsume mental activity.

Despite superficial similarities, the behavior of our mod
must be distinguished from ‘‘array enhanced stochastic re
nance’’@24# which is a noise induced phase locking pheno
enon. Our analysis has shown that for small diffusive co
pling the stochastic Haken model can be approximated b
bistable system and thus has more in common with tra
tional SR models.
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